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Abstract
The Hall–Post inequalities provide lower bounds onN -body energies in terms of
N ′-body energies withN ′ < N . They are rewritten and generalized to be tested
with exactly solvable models of Calogero–Sutherland type in one and higher
dimensions. The bound for N spinless fermions in one dimension is better
saturated at large coupling than for noninteracting fermions in an oscillator
potential.

PACS number: 05.30.Fk

It is important to obtain good upper and lower bounds on the binding energy of N -particle
systems. Since upper bounds are provided by variational estimates, it is natural that a major
emphasis in recent years has been on obtaining good lower bounds.

The Hall–Post inequalities consist of lower bounds to N -body energies in terms of N ′-
body energies with N ′ < N and modified constituent masses or coupling constants [1–3].
Applications of these inequalities have been proposed for studying the thermodynamic limit
of large systems and the stability of matter [3], or the relation of baryons to mesons in hadron
spectroscopy [2, 4].

So far, the Hall–Post inequalities have been tested in great detail for few-body systems,
for which accurate numerical calculations can be performed, or in the large-N limit, within
some approximation. It seems appealing to test the inequalities for arbitrary N with energies
which are calculated exactly. The purpose of this Letter is to adapt and apply the Hall–Post
inequalities to several exactly solvable N -body models.

Inspired by the seminal work of Calogero and Sutherland, in recent years, ground-state
energy and at least a part of the excitation spectrum (if not the full spectrum) has been obtained
for several newN -body problems. Some of these Hamiltonians have already found applications
in a variety of areas.

We broadly consider four types of N -body problem.
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(1) N -body problems in one dimension with two-body (and also maybe one-body) interaction
in the presence of either a two-body or one-body oscillator potential. Some examples of
this class are AN−1 [5], BCN , DN [6] models. The case of D dimensions is considered
in [7].

(2) N -body problems in one dimension but with periodic boundary conditions and with two-
body (and also possible one-body interaction). Again, some examples of this class are the
AN−1 [8] and BCN , DN [6] models.

(3) N -body problems in one dimension with two-body inverse square interaction in the
presence of a hyper-Coulomb potential [9].

(4) N -body problems of Calogero type in two and higher dimensions with two- and three-body
interactions in the presence of one- or two-body oscillator potential [10, 11].

Our conclusions can be summarized as follows. While comparing the first and second
types of model with the Hall–Post inequalities, we find that, contrary to our initial belief, the
bound for spinless fermions in one dimension is better saturated in the large-coupling limit
rather than for N noninteracting fermions in an oscillator potential. For the hyper-Coulomb
case, using convexity argument, we derive a slightly better lower bound than was known before.
Finally, we show that Hall–Post bounds also work reasonably well in models with both two-
and three-body interactions.

In this paper we shall consider models with N identical particles of mass m (which we
shall put equal to unity without any loss of generality) and whose interaction does not depend
on their spins. This corresponds to the Hamiltonian

HN(m, g1, g2, g3) =
N∑
i=1

p2
i

2m
+ g1V (ri) + g2

∑
i<j

V (rij ) + g3

∑
i<j<k

V (rijk). (1)

For this case, it has been shown that the corresponding N -particle bound-state energy EN
satisfies the bound [3, 4]

EN(m, g1, g2, g3) � N

N − 1
EN−1

(
m, g1,

N − 1

N − 2
g2,

N − 2

N − 3
g3

)
. (2)

When the Hamiltonian (1) is translationally invariant, then this bound can be improved, yielding
the new inequality [1, 2]

EN(m, g2, g3) � N − 1

N − 2
EN−1

(
m,

N

N − 1
g2,

N(N − 2)

(N − 1)(N − 3)
g3

)
. (3)

As a representative of the first type of model, we consider the original Calogero problem [5]
for which the N -body Hamiltonian is given by (h̄ = m = 1)

H = −1

2

N∑
i=1

d2

dx2
i

+
N∑

i<j=1

[
ω2

4
(xi − xj )

2 +
g

(xi − xj )2

]
. (4)

As shown by Calogero, the ground-state energy for this N -particle system is given by

EN =
√
N

8

[
N2 − 1 + (β − 1)N(N − 1)

]
ω (5)

where

g = β(β − 1) i.e. β = 1

2
±

√
1 + 4g

2
(6)

while the corresponding ground-state eigenfunction is given by

ψ =
N∏
i=1

(xi − xj )
β exp

[
− ω√

2N

N∑
i<j=1

(xi − xj )
2

]
. (7)
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Figure 1. Hall–Post ratio RN , as defined in
equation (11) for the Calogero model (4), in
the case of N = 5 particles, as a function of
the coupling constant g. The dotted line is the
g → ∞ limit.

Note that we have to choose the positive square root in equation (6) so that g = 0 corresponds
to β = 1 and hence to fermions.

For translationally invariant Hamiltonians with two-body interaction, such as the one given
in equation (4), the bound (3) takes the form

EN(m,ω, g) � N − 1

N − 2
EN−1

(
m,ω

√
N

N − 1
,

N

N − 1
g

)
. (8)

Using the bound-state energy expression (5) as derived for the Hamiltonian (4), it is easily
seen that

EN−1

(
m,ω

√
N

N − 1
,

N

N − 1
g

)
=
√
N

8

[
N(N − 2) + (β ′ − 1)(N − 1)(N − 2)

]
ω (9)

where

β ′ = 1

2
+

√
N(2β − 1)2 − 1

2
√
N − 1

. (10)

Using equations (5), (8) and (9) we then obtain

RN ≡ EN(m,ω, g)

N−1
N−2EN−1

(
m,ω

√
N
N−1 ,

N
N−1g

) � N + 1 + (β − 1)N

N + (β ′ − 1)(N − 1)
. (11)

In the noninteracting fermion limit (i.e. g = 0 or β = β ′ = 1), the right-hand side is N+1
N

while in the strong-coupling limit (i.e. g → ∞) the rhs is
√
N√
N−1

. On the other hand, as
N → ∞ in one dimension, then the ratio goes to unity, for all values of g. Thus we find that,
contrary to our naive expectation, the bound is better satisfied by strongly interacting rather
than noninteracting fermions in an oscillator potential.

Figure 1 displays the ratio RN as a function of the coupling constant g in the case N = 5.
One starts at g = 0 from the value R5 = 6/5 corresponding to a pure oscillator. Then the ratio
evolves regularly towards its large-g limit

√
5/4.

We have also examined how Hall–Post inequalities behave in similar models like BCN ,
DN , and even periodic models like those of Sutherland. In all these cases we found a behaviour
similar to that given in figure 1. We might add here that many of these models are not
translationally invariant and instead of the lower bound (8) we have to use the simpler bound (2).

As a second example, we now consider a model of the third type [9], i.e.

H = −1

2

N∑
i=1

d2

dx2
i

+
N∑

i<j=1

g

(xi − xj )2
− α2√∑N

i<j=1(xi − xj )2
(12)
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Figure 2. Ratio RN , as given in equation (13),
for the model of equation (12), in the case of
N = 5 particles, as a function of the coupling
constant g. The dotted line is the g → ∞ limit.

which contains a hypercentral Coulomb interaction. The N -particle ground-state binding
energy has been shown to be

EN = − α2

N [N − 2 +N(N − 1)β]2
(13)

with β and g being again related by equation (6).
We now show that using a convexity argument, one can adapt the bound (3) to this case.

In particular, we use the fact that if a function f is a convex function then

f

(
αa + βb + · · ·
α + β + · · ·

)
� α

α + β + · · ·f (a) +
β

α + β + · · ·f (b) + · · · (14)

for positive weight factors α, β, . . . . On using f (x) = −1/
√
x, it is easily shown that in this

case the Hall–Post inequality takes the form

EN(m, g, α) � N − 1

N − 2
EN−1

(
m,

N

N − 1
g,
(N − 1)

√
(N − 2)

N3/2
α

)
. (15)

How good is this inequality? We can test this by using the energy eigenvalue (13) and
computing EN−1 for the appropriate couplings. On noting the fact that the binding energy is
negative, the Hall–Post inequality (15) in our case takes the form

RN ≡ EN(m, g, α)

N−1
N−2EN−1

(
m, N

N−1g,
(N−1)

√
(N−2)

N3/2 α
)

� (N)2[N − 3 + (N − 1)(N − 2)β ′]2

(N − 1)2[N − 2 +N(N − 1)β]2
(16)

where

β ′ = 1

2
+

√
(N − 1)(2β − 1)2 − 1

2
√
N − 2

. (17)

We find that but for N → ∞, g arbitrary, this bound is not as good as (11) in the Calogero
case. In figure 2, we have plotted the ratio RN as a function of g in the case N = 5, which
gives an indication of how good this inequality is for finite N .

As the third and the last example, we consider a model of the fourth type [10, 11], which
is a Calogero-type model but in D dimensions given by

H = 1

2

N∑
i=1

p2
i +

ω2

4

N∑
i<j=1

r2
ij + g

N∑
i<j=1

1

r2
ij

+G
∑
i<j,k

k 
=i,j

rki · rkj

r2
kir

2
kj

(18)
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where one also requires a three-body potential in addition to the two-body potential. The
N -boson ground-state energy is

EN (m, g,G(g)) =
√
N

8

[
D(N − 1) +N(N − 1)β

]
ω (19)

provided the two-body coupling g and the three-body coupling G are related by

g = G + (D − 2)
√
G G = β2 (20)

this defining G(g). Note that, unlike in the one-dimensional case, here β = 0 corresponds to
g = G = 0 and hence to bosons in a pure oscillator potential.

Let us now examine how the Hall–Post inequality (3) fares in this case. It is not possible
to test this inequality directly since g andG have a specific relationG(g) between them which
in general will not be satisfied if g andG are changed to N

N−1g and N(N−2)
(N−1)(N−3)G, respectively.

However, we make use of the fact that both the two- and the three-body terms in equation (18)
are positive in any dimension D(�2) and hence we can write an appropriate inequality. For
example we obviously have

EN (m,ω, g,G(g)) � N − 1

N − 2
EN−1

(
m,ω

√
N

N − 1
,

N

N − 1
g,

N(N − 2)

(N − 1)(N − 3)
G(g)

)

� N − 1

N − 2
EN−1

(
m,ω

√
N

N − 1
,

N

N − 1
g,G

(
N

N − 1
g

))
(21)

since

N(N − 2)

(N − 1)(N − 3)
G(g) � G

(
N

N − 1
g

)
. (22)

How good is this inequality? Using the exact N -particle binding energy (19) it is easily
seen that

EN(m,ω, g,G(g))

N−1
N−2EN−1

(
m,ω

√
N
N−1 ,

N
N−1g,G

(
N
N−1g

)) � D +Nβ

D + (N − 1)β ′ (23)

where

β ′ = −D − 2

2
+

√
N(2β +D − 2)2 − (D − 2)2

2
√
N − 1

. (24)

It is interesting that this bound is saturated for noninteracting bosons (β = 0, i.e. g = G = 0)
in an oscillator potential as well as for large number of particles, no matter what the coupling
is. For large coupling but finite N , the ratio is

√
N/(N − 1). The bound is also saturated at

large D, as seen explicitly in equation (23). This property of the large-D limit was noted by
Gonzalez-Garcia [12].

Final remarks are in order:

(1) It would be interesting to extend the investigation to the case of unequal masses. Some of
the exactly solvable models considered here can be generalized to accommodate different
constituent masses [13]. The bound for unequal masses was discussed in the case of
N = 3 or 4 particles interacting through simple pairwise potentials [14].

(2) Exactly solvable models are also available for particles with residual interaction with
nearest and next-to-nearest neighbour only [15]. It would be interesting to extend the
Hall–Post inequalities to this situation.
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(3) One of the striking features of some of the models considered here in one or two dimensions
is that the statistics evolves continuously as one changes the coupling constant. Still, if
one looks at theEN toEN−1 ratio measuring how far the inequalities are from saturation, it
evolves with a rather smooth and monotonic behaviour. Fermions can approach saturation
provided the coupling and the number of particles are large enough.

We hope to address some of the open issues in the near future.

AK would like to thank the members of the Institut des Sciences Nucléaires, Grenoble, for warm
hospitality during his trip there as a part of the Indo-French Collaboration Project CEFIPRA
1501-1502, supported by the Indo-French Centre for Promotion of Advanced Research (Centre
Franco-Indien Pour la Promotion de la Recherche Avancée).

References

[1] Hall R L and Post H R 1967 Proc. Phys. Soc. 90 381
[2] Basdevant J-L, Martin A and Richard J-M 1990 Nucl. Phys. B 343 60 69
[3] Fisher M E and Ruelle D 1966 J. Math. Phys. 7 260

Dyson F J and Lenard A 1967 J. Math. Phys. 8 423
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